The Benes̆ equation and stochastic calculus of variations
نویسندگان
چکیده
منابع مشابه
An analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملStochastic Calculus of Variations for Martingales
The stochastic calculus of variations for the Wiener process, initiated in Malliavin , aims to obtain conditions for the regularity of the density of Wiener functionals given by the values of diffusion processes. It also developed as an extension to anticipating processes of the Itô calculus, by means of the Skorohod integral, cf. Nualart-Pardoux , Üstünel . In the case of point processes we ca...
متن کاملan analytic study on the euler-lagrange equation arising in calculus of variations
the euler-lagrange equation plays an important role in the minimization problems of the calculus of variations. this paper employs the differential transformation method (dtm) for finding the solution of the euler-lagrange equation which arise from problems of calculus of variations. dtm provides an analytical solution in the form of an infinite power series with easily computable components. s...
متن کاملVariations of the Solution to a Stochastic Heat Equation
We consider the solution to a stochastic heat equation. This solution is a random function of time and space. For a fixed point in space, the resulting random function of time, F (t), has a nontrivial quartic variation. This process, therefore, has infinite quadratic variation and is not a semimartingale. It follows that the classical Itô calculus does not apply. Motivated by heuristic ideas ab...
متن کاملVariations of the solution to a stochastic heat equation II
We consider the solution u(x, t) to a stochastic heat equation. For fixed x, the process F (t) = u(x, t) has a nontrivial quartic variation. It follows that F is not a semimartingale, so a stochastic integral with respect to F cannot be defined in the classical Itô sense. We show that for sufficiently differentiable functions g, a stochastic integral ∫ g(F ) dF exists as a limit in distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1995
ISSN: 0304-4149
DOI: 10.1016/0304-4149(94)00058-2